Will we ever run 100m in under nine seconds?

# Thread: Will we ever run 100m in under nine seconds?

1. ## Will we ever run 100m in under nine seconds?

In 2008, at the Beijing Olympic Games, Jamaican sprinter Usain Bolt ran the 100m in just 9.69 seconds, setting a new world record. A year later, Bolt surpassed his own feat with an astonishing 9.58-second run at the 2009 Berlin World Championships. With the 2012 Olympic Games set to begin in London, the sporting world hopes Bolt will overcome his recent hamstring problems and lead yet another victorious attack on the sprinting record. He is arguably the fastest man in history, but just how fast could be possibly go?

That?s a surprisingly difficult question to answer, and ploughing through the record books is of little help. ?People have played with the statistical data so much and made so many predictions. I don?t think people who work on mechanics take them very seriously,? says John Hutchinson, who studies how animals move at the Royal Veterinary College in London, UK.

The problem is that the progression of sprinting records is characterised by tortoise-like lulls and hare-like? well? sprints. People are getting faster, but in an unpredictable way. From 1991 to 2007, eight athletes chipped 0.16 seconds off the record. Bolt did the same in just over one year. Before 2008, mathematician Reza Noubary calculated that ?the ultimate time for [the] 100 meter dash is 9.44 seconds.? Following Bolt?s Beijing performance, he told Wired that the prediction ?would probably go down a little bit?.

John Barrow from the University of Cambridge ? another mathematician ? has identified three ways in which Bolt could improve his speed: being quicker off the mark; running with a stronger tailwind; and running at higher altitudes where thinner air would exert less drag upon him. These tricks may work, but they?re also somewhat unsatisfying. We really want to know whether flexing muscles and bending joints could send a sprinter over the finish line in 9 seconds, without relying on environmental providence.

To answer that, we have to look at the physics of a sprinting leg. And that means running headfirst into a wall of ignorance. ?It?s tougher to get a handle on sprinting mechanics than on feats of strength or endurance,? says Peter Weyand from Southern Methodist University, who has been studying the science of running for decades. By comparison, Weyand says that we can tweak a cyclist?s weight, position and aerodynamic shape, and predict how that will affect their performance in the Tour de France. ?We know down to 1%, or maybe even smaller, what sort of performance bumps you?ll get,? he says. ?In sprinting, it?s a black hole. You don?t have those sorts of predictive relationships.?

Our ignorance is understandable. By their nature, sprints are very short, so scientists can only make measurements in a limited window of time. On top of that, the factors that govern running speed are anything but intuitive.

Sole power

Weyand divides each cycle of a runner?s leg into what happens when their foot is in the air, and what happens when it?s on the ground. The former is surprisingly irrelevant. Back in 2000, Weyand showed that, at top speed, every runner takes around a third of a second to pick their foot up and put it down again. ?It?s the same from Usain Bolt to Grandma,? he says. ?She can?t run as fast as him but at her top speed, she?s repositioning her foot at the same speed.?

That third of a second in the air ? the swing time ? is probably close to a biological limit. Weyand thinks that there is very little that people can do to improve on it, with a notable exception. Oscar Pistorius, the South African double-amputee, runs on artificial carbon-fibre legs that each weigh less than half of what a normal fleshy limb would do. With this lighter load, he can swing his legs around 20% faster than a runner with intact limbs, moving at the same speed.

For most runners though, speed is largely determined by how much force they can apply when their foot is on the ground. They have two simple options for running faster: hit the ground harder, or exert the same force over a longer period.

The second option partly explains why greyhounds and cheetahs are so fast. They maximise their time on the ground using their bendy backbones. As their front feet land, their spines bend and collapse, so their back halves spend more time in the air before they have to come down. Then, their spines decompress, giving their front halves more time in the air and their back legs more time on the ground.

Such tricks aren?t available to us two-legged humans, but technology provides alternatives. In the 1990s, speed skaters started using a new breed of ?clap skates? where the blade is hinged to the front of the boot, rather than firmly fixed. As the skaters pushed back, the new design kept their blades in longer contact with the ice, allowing them to exert the same force over more time. Speed records suddenly fell.

People have tried to duplicate the same effect with running shoes, but with little success. That?s because a running leg behaves a bit like a pogo stick. As it hits the ground, it compresses. As it steps off, it gets a bit of elastic rebound. Technologies that try to alter a runner?s gait tend to interfere with this rebound, and diminish the leg?s overall performance. ?It?s hard to intervene in a similar manner to the clap-skates without buggering up the other mechanics of the limb,? says Weyand. (Again, Pistorius bucks the trend because his artificial legs are springier than natural ones, and give him around 10% longer on the ground than other runners.)

Ground force

For those with intact limbs, one option remains: exert more force on the ground. Put simply, fast people hit the ground more forcefully than slow people, relative to their body weight. But we know very little about what contributes to that force, and we are terrible at predicting it based on a runner?s physique or movements.

We know that champion male sprinters can hit the ground with a force that?s around 2.5 times their body weight (most people manage around two times). When Usain Bolt?s foot lands, it applies around 900 pounds (400kg) of force for a few milliseconds, and continues pushing for around 90 more.

Weyand likes to imagine a weightlifter trying to apply the same force in a one-legged squat ? they would come nowhere close. ?What we know about force under static conditions under-predicts how hard sprinters hit by a factor of two,? he says. ?We just don?t have the ability to go from the movements of the body to the force on the ground.? Even if a sprinter?s muscles were eventually boosted by gene doping techniques, we have no way of calculating how much faster their owners would run.

Studies are underway to fill in those gaps, and Weyand is hoping that we?ll be able to make better predictions in five or 10 years. Just a few months ago, Marcus Pandy from the University of Melbourne used computer simulations of sprinters to show that the calf muscles, more than any others, determine the amount of force that runners apply to the ground. At top speeds, the hip muscles become increasingly important too. ?Maybe if you train a sprinter, you could potentially train them to have really strong calves,? says Hutchinson.

For the moment, however, any predictions about the ceilings of human speed are still ill-informed ones. The only way to work out if Bolt or some other sprinter will smash the existing record is to watch them.

If you would like to comment on this article or anything else you have seen on Future, head over to our Facebook page or message us on Twitter.

BBC - Future - Health - Will we everâ€¦ run 100m in under nine seconds?

2. He needs more gears to beat that feat I'm thinking.

3. i was involved in 100m sprinting at my younger age and i can tell you that records improved because of many factors: 1-improved training methods that helped maximize the cadence or frequency of steps, 2- running style and methods 3- the surface on which we run, some surfaces are faster than others and other factors but also don't forget the drugs and all kinds of chemical enhancements that are becoming very advanced and very hard to catch on time, i can almost guarantee you that without them no one can run under 10 secs. drugs did help a friend of mine go from 11 secs to 10.6 so assuming bolt ran the 9.59 all natural then with drugs he probably can do it around 9.1 and with little help from the wind 2m/s he can maybe go below 9. The wind plays a good role , a 1m/s wind helps improve a time by 1 tenth of a sec. but the question remains : did bolt run all natural???? he was not caught but this does not mean he was natural.
IMHO under 9 sec will never be reached in the next 200 years with or without drugs

4. i forgot to add: short sprinters can generate more torque and hence more acceleration and have neurologically faster legs or faster response time, on the other hand tall sprinters can reach higher maximum speeds sort of a car with small tires and one with large tires. Bolt's talent resides in the fact that he is tall and at the same he has a fast neurological response as well as good amount of force. But i think this time he will be beat in the 100m but probably not in the 200m

5. Read the article. Unless we start breeding people specifically for sprinting or allowing gears, I don't think it'll be reachable in the next 200 years, as bjg mentioned.

Read the article. Unless we start breeding people specifically for sprinting or allowing gears, I don't think it'll be reachable in the next 200 years, as bjg mentioned.

I was one of many that stated, I didn't seen anyone deadlifting 1000 lbs would happen.

I had to eat those words.

Bumble Bees Cannot Fly

Decades ago, some scientist reserarch concluded that the body of a bumble bee was too big for it wings. Thus, bumble bees should NOT be able to fly.

Missing Information

The take home message was that the bumble bee research did NOT was missing some critical information.

Science is very fluid. What true today may be overturned tomorrow.

Keys To Faster Sprint Times

As bjg noted...

1) Better training methods. We keep learn better method of training and recovery. It is a never ending process.

2) Better drugs, supplements, and nutrition applications. Drugs have been around forever and are hear to stay.

3) Better equipment. As Charlie Francis said, the track running surface is a determine factor in spint times. Researchers will most likely find shoes that enable sprints to run faster.

Synergistic Effect

A synergistic efffect needs will produce faster sprint times.

A synergistic effect is the sum is greater than it's parts. Thus, 2 + 2 = 5!

That means better training, equipment and "supplements" are the real keys.

Kenny Croxdale

7. back in 1978 they used to make us run downhill to improve neurological leg speed or cadence, as your legs will be forced to move faster at a faster frequency. this would improve cruizing speed in the middle of the race,
They made us sprint uphill to build up muscle power to start fast from the block, Most of the training was outdoors in a dynamic way , not static isometric muscle building.

8. Originally Posted by Kenny Croxdale
Keys To Faster Sprint Times

As bjg noted...

1) Better training methods. We keep learn better method of training and recovery. It is a never ending process.

2) Better drugs, supplements, and nutrition applications. Drugs have been around forever and are hear to stay.

3) Better equipment. As Charlie Francis said, the track running surface is a determine factor in spint times. Researchers will most likely find shoes that enable sprints to run faster.
4) The right parents.

Structural superiority for running is an obvious requirement.

Wasn't there an article that talked about Michael Phelps having double-jointed shoulders and webbed toes?

Michael Phelps' Freakish Physique Explained

Likewise, a child will be born one day with exactly the right structure, muscle fibers, lung capacity, what have you, to break that 9-second barrier.

9. ^^^ to me bolt is an example of a freakish sprinter because he is tall and has fast neurological response and tremendous force all combined...perhaps one day we will have a freakier sprinter who knows.
but as i suggested and Kenny mentioned , science will be playing a good role....the track surface makes a difference and the shoes and material used too....who knows perhaps sprinters like john smith or jesse owens were faster than today' sprinters but the technology at that time did not help them...and in the future we might get better times but nobody will know if we will get better sprinters.

10. Not until bolt gets' his head on straight,and we stop drug testing wil it ever go that low imo.

11. Seeing how much humans have evolved over the years I'm sure it will happen eventually. It probably won't be within our lifetimes but at some point it will definitely happen.

Edit: I didn't read the whole article or anything so if it said Usain Bolt will run it in under 9 seconds (or any modern day sprinter) then I'm sorry for that post.

12. Jesse Owens ran a 10.2 to win in the 50's. so in 60 years the top time has only decreased by a good .5 sec. we had to hit a 10.5 in the NCAA to make it to nationals. and that was in the late 80's.

13. Originally Posted by LAM
Jesse Owens ran a 10.2 to win in the 50's. so in 60 years the top time has only decreased by a good .5 sec. we had to hit a 10.5 in the NCAA to make it to nationals. and that was in the late 80's.
Not sure of his times, but Jesse Owens competed in the 1936 Olympics in Berlin winning 4 gold medals (Carl Lewis matched that in the 1984 Olympics). He was long retired by the 1950's.

14. Absolutely it will happen just not for a while. As long as the world record is broken every decade or so it would have to drop below 9. I just dont think I'll be around to see it or will be too old and senile when it does happen

#### Posting Permissions

• You may not post new threads
• You may not post replies
• You may not post attachments
• You may not edit your posts
•